
Multi-Stage Programming for GPUs
in Modern C++ using PACXX

Michael Haidl* Michel Steuwer‡ Tim Humernbrum* Sergei Gorlatch*
m.haidl@uni-muenster.de michel.steuwer@ed.ac.uk t.hume@uni-muenster.de gorlatch@uni-muenster.de

*University of Muenster, Germany ‡University of Edinburgh, United Kingdom

Abstract
Writing and optimizing programs for high performance on systems
with GPUs remains a challenging task even for expert program-
mers. One promising optimization technique is to evaluate parts of
the program upfront on the CPU and embed the computed results
in the GPU code allowing for more aggressive compiler optimiza-
tions. This technique is known as multi-stage programming and has
proven to allow for significant performance benefits. Unfortunately,
to achieve such optimizations in current GPU programming mod-
els like OpenCL, programmers are forced to manipulate the GPU
source code as plain strings, which is error-prone and type-unsafe.

In this paper we describe PACXX - a GPU programming ap-
proach using modern C++ standards, with the convenient features
like type deduction, lambda expressions, and algorithms from the
standard template library (STL). Using PACXX, a GPU program is
written as a single C++ program, rather than two distinct host and
kernel programs. We extend PACXX with an easy-to-use and type-
safe API for multi-stage programming avoiding the pitfalls of string
manipulation. Using just-in-time compilation techniques, PACXX
generates efficient GPU code at runtime.

Our evaluation shows that using PACXX allows for writing
multi-stage code easier and safer than currently possible. Using two
detailed application studies we show that multi-stage programming
can significantly outperform equivalent non-staged programs. Fur-
thermore, we show that PACXX generates code with performance
comparable to industrial-strength OpenCL compilers.

Categories and Subject Descriptors D.3.4 [Processors]: Code
generation, Compilers, Optimization

Keywords Multi-Stage Programming, GPUs, Modern C++, Run-
time Optimization, Runtime Code Generation

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Graphics Processing Units (GPUs) are increasingly used in today’s
computer systems. However, writing high-performance programs
for such systems remains a complicated task. Special programming
models like CUDA [1] or OpenCL [2] must be mastered for writing
the parts of an application program (so-called kernels) which are to
be executed on a GPU. The kernels are written in a limited subset of
C or C++ and are distinct from the rest of the program, the so-called
host program which runs on a CPU. Crucially, OpenCL – the only
programming approach which is portable across GPUs of different
vendors – represents kernels as strings in the host program, making
sharing of code between kernels and the host program a non-trivial
engineering issue.

Multi-stage programming (MSP) is a programming technique
for generating optimized programs at runtime. In MSP, parts of the
program are evaluated at code generation time and the computed
results are embedded in the generated program. This has proven to
allow for significant performance benefits [3] enabling the compiler
of the generated program to apply aggressive optimizations.

OpenCL programmers can exploit the idea of multi-staging by
manually embedding values known in the host program into a string
representing the OpenCL kernel before kernel compilation. Ex-
amples of such values might be the size of arrays or the number
of threads executing the kernel. Projects like PyCUDA and Py-
OpenCL [4] go a step further and generate OpenCL kernels at run-
time by carefully concatenating predefined string building blocks.
However, these multi-staging techniques have an inherent weak-
ness: the string embedding is not safe, e. g. there are no guarantees
that a syntactically correct OpenCL kernel is produced or that type
safety is maintained.

To support the development of optimized programs for GPUs,
we propose our PACXX programming approach [5]. PACXX is a
unified programming approach for programming GPUs using the
newest C++ standard. Our approach allows programmers to write
their applications as a single C++ program, rather than two distinct
host and kernel programs, and to make use of modern C++ fea-
tures like type deduction, lambda expressions, and algorithms from
the standard template library (STL). The PACXX runtime automat-
ically manages the program execution on the GPU including data
transfers to and from the GPU. For supporting runtime optimiza-
tions, we extend PACXX with MSP capabilities where syntactical
correctness and type safety are ensured automatically. Internally,
PACXX uses just-in-time (JIT) compilation techniques to generate
GPU code at runtime.

We demonstrate our approach on two well-known algorithms
in parallel computing – Parallel Reduction and N-Body simula-
tion. Using the Parallel Reduction example we show that MSP in
PACXX is easy to use and safe, in contrast to MSP in OpenCL. Us-

1 2016/1/19

ing the N-Body Simulation, we demonstrate how modern C++ and
MSP can be used together in PACXX to abstract and implement
hardware-specific optimizations of programs for GPUs.

In detail we make three main contributions:

1. We present our PACXX programming model for simplified,
C++-based GPU programming and its implementation.

2. We integrate Multi-Stage Programming (MSP) into PACXX
and describe our compiler-based implementation which ensures
correctness of the staging and maintains type safety.

3. We evaluate the ease of use and performance of our approach
using two detailed application studies.

The remainder of the paper is structured as follows. Section 2
briefly presents the PACXX approach to GPU programming. Sec-
tion 3 discusses multi-stage programming for GPUs in OpenCL and
describes how PACXX overcomes the shortcomings of OpenCL.
Section 4 presents a case study of using PACXX and multi-stage
programming. Section 5 discusses the PACXX implementation. We
experimentally evaluate our approach in Section 6. Finally, Section
7 discusses related work and we conclude in Section 8.

2. GPU Programming in PACXX
In this section, we briefly introduce our PACXX (Programming Ac-
celerators with C++) programming approach [5] and compare its
programming style with OpenCL. In PACXX, systems with accel-
erators such as GPUs are programmed using pure C++, without
specific language constructs like in OpenCL or CUDA. Through-
out this and the next section we will use a common example for dis-
cussing GPU programming and multi-staging: parallel reduction.

GPU Programming in OpenCL Listing 1 shows the parallel re-
duction implemented in OpenCL. This implementation is provided
by Nvidia as part of their SDK [6]. The listing shows all impor-
tant steps required in OpenCL to execute a computation on a GPU,
but the code is simplified due to space constrains. The program is
divided into two distinct parts: 1) the kernel program written in
OpenCL C which is represented as a string in OpenCL (lines 2–
13); 2) the management program (called host program in OpenCL)
which is usually written in C and makes calls to the OpenCL API
for managing the kernel execution (lines 16–45).

In the kernel program (line 8), every thread copies an element
from the input array to the fast local memory (sm). Then, a tree-
based reduction is performed in the for loop in line 10 and then the
final result is written to the output array in line 13.

The host program consists of nine steps highlighted with com-
ments in Listing 1. These steps include: creating and compiling
the kernel program (lines 18 and 20); creating a kernel from it
(line 22); allocating OpenCL buffers for the input and output
memory (lines 24–25); manually copying the input data to the
GPU (lines 27–28); preparing and launching the kernel (lines 30–
35); and copying the computed result back to the host program
(lines 37–40). As OpenCL is by default an asynchronous API, we
have to explicitly wait for all operations to finish (line 42). In an
OpenCL kernel program it is only possible to synchronize inside
a group of threads, called workgroup, using barriers (see lines 9
and 12) but it is not possible to synchronize across workgroups.
Therefore, the shown kernel performs one reduction per workgroup
and we finish the reduction on the host in line 44.

1 // Kernel program written in OpenCL C
2 char* code = "kernel \
3 void partReduce (global float *input , \
4 global float *ouput , \
5 int n, local float* sm) { \
6 unsigned int lid = get_local_id (0); \
7 unsigned int gid = get_global_id (0); \
8 sm[lid] = (gid < n) ? input[gid] : 0; \
9 barrier(CLK_LOCAL_MEM_FENCE); \

10 for(int s= get_local_size (0)/2; s >0; s > >=1){ \
11 if (lid < s) { sm[lid] += sm[lid + s]; } \
12 barrier(CLK_LOCAL_MEM_FENCE); } \
13 if(lid ==0) ouput[get_group_id (0)] = sm [0];}";
14

15 // Host program written in C using OpenCL API
16 float reduce(const float* inputPtr , int n) {
17 // 1. Creating program
18 program = clCreateProgramWithSource(code);
19 // 2. Compiling kernel
20 clBuildProgram(program)
21 // 3. Create kernel
22 kernel = clCreateKernel(program);
23 // 4. Alocate OpenCL buffers
24 inputBfr = clCreateBuffer(n*sizeof(float));
25 outputBfr = clCreateBuffer(n*sizeof(float));
26 // 5. Copying input data to the GPU
27 clEnqueueWriteBuffer(inputBfr , inputPtr ,
28 n*sizeof(float));
29 // 6. Preparing and launching kernel
30 clSetKernelArg(inputBuffer);
31 clSetKernelArg(outputBuffer);
32 clSetKernelArg(n);
33 clSetKernelArg(amountOfLocalMemory);
34 clEnqueueNDRangeKenel(glbSize , lclSize ,
35 kernel);
36 // 7. Copying result from the GPU
37 float* outputPtr =
38 malloc(glbSize/lclSize*sizeof(float));
39 clEnqueueReadBuffer(outputBfr , outputPtr ,
40 n*sizeof(float));
41 // 8. Wait for the operation to finish
42 clFinish ();
43 // 9. Finish reduction on the host
44 return reduceOnHost(outputPtr);
45 }

Listing 1: Reduction example from the Nvidia OpenCL SDK [6].

GPU Programming in PACXX Listing 2 shows the same reduc-
tion example written in PACXX. While in OpenCL the program is
divided into two parts, in PACXX we write a single C++ program.
We use the PACXX provided kernel function (line 5) to specify
the code to be executed in parallel on the GPU which is written as
a C++ lambda expression (lines 6–17). We can see the same op-
erations as in OpenCL of copying the data into the local memory
(sm) in line 12, the for loop for the tree-based reduction (line 14),
and the barriers in line 13 and 16. PACXX provides its own C++
API for accessing the thread identifiers (lines 8–10) and it uses a
slightly different notation for the barriers which makes explicit that
they work only for a group of threads (called block in PACXX in
analogy to CUDA).

For launching the computation we call the std::async func-
tion (line 20) defined in the C++ standard, and we finish the compu-
tation on the CPU by using the C++ standard std::accumulate
function (line 22).

2 2016/1/19

1 // Single , unified C++ program
2 float reduce(const std::vector <float >& input){
3 std::vector <float > output(glbSize/lclSize);
4

5 auto redKernel = kernel(
6 [](const auto& input , auto& output){
7 shared_memory <float > sm;
8 auto block = Block ::get ();
9 auto lid = Thread ::get(). index.x;

10 auto gid = Thread ::get(). global.x;
11 auto n = input.size ();
12 sm[tid] = (gid < n) ? input[gid] : 0;
13 block.synchronize ();
14 for(int s=block.size.x/2; s>0; s>>=1) {
15 if (tid < s) { sm[tid] += sm[tid + s]; }
16 block.synchronize (); }
17 if (tid ==0) ouput[block.index.x] = sm[0];
18 }, glbSize , lclSize , amountOfLocalMemory);
19

20 std::async(launch ::kernel , redKernel ,
21 input , output).wait ();
22 return std:: accumulate(output); }

Listing 2: Reduction example as a unified program in PACXX.

Comparison By comparing the listings 1 and 2 we can clearly see
the advantages of PACXX over OpenCL.

PACXX provides a unified programming experience in a single
C++ program whereas OpenCL separates the implementation into
the distinct kernel and host programs. Data type definitions and
functions can be easily shared and reused in PACXX across kernel
and host code whereas they have to be written twice in OpenCL.

The management of the GPU is implicit in PACXX, it is sig-
nificantly more detailed and cumbersome in OpenCL. PACXX is
implemented as a compiler, as described in Section 5, and, there-
fore, compiles the kernel code automatically into an executable,
whereas in OpenCL the compilation of the kernel code must be
arranged manually (Steps 1–3). The memory management is per-
formed automatically by PACXX using the standard C++ vector
container and data is transferred automatically before a kernel is ex-
ecuted, while OpenCL requires explicit memory management with
their custom OpenCL buffers (Steps 4, 5, and 7). The launching of
a kernel in PACXX uses the C++ standard async function whereas
a kernel launch in OpenCL is quite verbose (Step 6) as every kernel
argument is set explicitly using a function call.

3. Multi-Stage Programming for GPUs
In this section we study how multi-stage programming can be used
to optimize programs for GPUs. Using the reduction example we
will show the potential benefits of multi-staging and how this is cur-
rently achieved in OpenCL. We will then identify inherent weak-
nesses of the existing multi-staging solutions and present how our
extended approach based on extended PACXX overcomes them.

Multi-stage programming with OpenCL Listing 3 shows an opti-
mized implementation of reduction in OpenCL by Nvidia [7] which
applies, among other optimizations, also multi-staging. Again, the
implementation is split into the kernel program (lines 1–20) and
the host program (lines 22–31). We omit the steps 2–9 from the
host program (line 30) as they are the same as in Listing 1.

The kernel program has been optimized as compared to List-
ing 1: a larger number of elements is reduced by a single thread
without barrier synchronizations in the while loop in line 8. The for
loop of the tree-based reduction has been unrolled (lines 15–19)
and replaced by individual if statements.

1 char* code = "kernel \
2 void partReduce (global float *input , \
3 global float *ouput , int n, \
4 local volatile float* sm) { \
5 int tid = get_local_id (0); \
6 int i = get_group_id (0)*(LOCAL_SIZE *2)+ tid; \
7 float sum = 0.0f; \
8 while (i < n) { \
9 sum += input[i]; \

10 if (N_IS_POW2 || i + LOCAL_SIZE < n) { \
11 sum += input[i+ LOCAL_SIZE]; } \
12 i += LOCAL_SIZE *2* get_num_groups (0); } \
13 sm[tid] = sum; \
14 barrier(CLK_LOCAL_MEM_FENCE); \
15 if (LOCAL_SIZE >= 512) { \
16 if (tid < 256) { sm[tid] += sm[tid +256];} \
17 barrier(CLK_LOCAL_MEM_FENCE); } \
18 // ... \
19 if (LOCAL_SIZE >= 2) { /*...*/ }; \
20 if (tid ==0) output[get_group_id (0)]= sm [0];}";
21

22 float reduce(const float* inputPtr , int n) {
23 char* define_lcl_size =
24 "#define LOCAL_SIZE " + lclSize + "\n";
25 char* define_n_is_pow2 =
26 "#define N_IS_POW2 " + isPow2(n) + "\n";
27 // 1. Creating program
28 program = clCreateProgramWithSource(
29 define_lcl_size + define_n_is_pow2 + code);
30 // Steps 2. - 9. as in Listing 1
31 }

Listing 3: Reduction using multi-stage programming from the
Nvidia OpenCL SDK [6].

The multi-stage programming in Listing 3 is split across the host
and kernel program. In the first part of multi-staging in the ker-
nel program, the two identifiers LOCAL SIZE and N IS POW2 are
used as constants, but they are not declared anywhere in the kernel
program. These identifiers are defined in the host program (lines
23–26) as C macros represented as strings which are then com-
bined with the kernel program in line 29. Therefore, lclSize and
isPow2(n) are evaluated in the host program before the values are
embedded in the kernel program. This allows the OpenCL compiler
to statically evaluate some of the if statements in the kernel pro-
gram, such as the one in line 15, and avoid generating a branching
instruction at kernel runtime. As we will see in Section 6, removing
these branches brings a significant performance benefit, improving
the performance by up to 2× on some GPU architectures.

Similarly, by evaluating whether the input size n is a power of 2
and embedding this information statically in the kernel code, the
kernel compiler can sometimes avoid the if statement in line 10,
which is significant since it is called multiple times in a loop.

Problems of multi-staging in OpenCL Listing 3 demonstrates
some inherent weaknesses of multi-stage programming in OpenCL.
The staging is achieved by evaluating expressions in the host pro-
gram and then embedding them in the kernel program by concate-
nating plain strings. In the example, macros are used for propagat-
ing the staged values in the kernel program. Working with a string
representing the source code is potentially dangerous, as it is very
easy to make mistakes which can only be detected at runtime of the
application and not when the host program is compiled. There is no
guarantee that the string manipulations result in an OpenCL kernel
which is syntactically valid and in which the type safety between
host and kernel program is maintained.

3 2016/1/19

1 float reduce(const std::vector <float >& input){
2 std::vector <float > output(glbSize/lclSize);
3

4 auto redKernel = kernel(
5 [=](const auto& input , auto& output){
6 shared_memory <float > sm;
7

8 auto localSize = stage(lclSize);
9 auto n = stage(input.size ());

10 auto nIsPow2 = stage([](auto x) {
11 return ((x&(x -1))==0); }, n);
12

13 auto block = Block ::get ();
14 auto tid = Thread ::get(). index.x;
15 auto i = block.index.x * localSize * 2 + t;
16 float sum = 0.0f;
17 while (i < n) {
18 sum += input[i];
19 if (nIsPow2 || i + localSize < n) {
20 sum += input[i + localSize]; }
21 i += localSize *2* Grid::get (). range.x; }
22 sm[tid] = sum;
23 block.synchronize ();
24 if (localSize >= 512) {
25 if (tid < 256) { sm[tid] += sm[tid +256];}
26 block.synchronize (); }
27 // ...
28 if (localSize >= 2) { /* ... */ }
29 if (tid == 0) output[block.index.x] = sum;
30 }, glbSize , lclSize , amountOfLocalMemory);
31

32 std::async(launch ::kernel , redKernel ,
33 input , output).wait ();
34 return std:: accumulate(output); }

Listing 4: Reduction in PACXX using multi-stage programming.

Multi-stage programming with PACXX We extended our PACXX
programming model with multi-staging capabilities to provide an
easy-to-use and safe API for multi-stage programming that over-
comes the mentioned weaknesses of OpenCL.

Listing 4 shows the reduction example with multi-stage pro-
gramming implemented in PACXX. The code implements the same
optimizations as in the OpenCL version in Listing 3. The key dif-
ference is the handling of the multi-staging. PACXX provides a
special function named stage which can be called from the code
executed on a GPU. The expression or function wrapped in a stage
call are evaluated on the CPU prior to the execution on the GPU
and the computed result is embedded into the kernel code.

For our example in Listing 4, this means that the expressions
in lines 8, 9 and 10 are evaluated before the kernel is launched. In
line 8, the value of localSize, which is passed as parameter lSize
to the kernel, becomes a constant known to the kernel compiler. In
line 9, the size of the input n is obtained from the size function
invoked on the input vector. Finally, in line 10, the nIsPow2 value
is computed by evaluating the lambda expression in lines 10 and 11
on the CPU. This instance of the stage function takes n as an
argument, which is only valid because n itself is a staged value.
The PACXX implementation ensures that no expressions which are
evaluated in the kernel code are passed as arguments to a stage
function as these expressions will only be available after the kernel
executes on the GPU. Due to the PACXX implementation of the
stage function, which we will discuss in the following section,
all type information is preserved and the usual C++ type safety
guarantees are maintained.

Comparison By comparing the two listings 3 and 4, we can see
the clear advantages of the PACXX multi-staging API as compared
to the string handling in OpenCL.

First, the PACXX API is easy to use: a single stage function
is used at the point where the code should be embedded into the
kernel program. In contrast, OpenCL splits the staging across host
and kernel program and involves cumbersome string handling.

Second, PACXX guarantees by design a syntactically correct
program, whereas this is not always the case in OpenCL. Espe-
cially, errors in the string handling in OpenCL are only detected at
runtime, whereas in PACXX errors are detected at compile time.

Finally, PACXX guarantees type safety thanks to its implemen-
tation built on top of the Clang and LLVM compiler frameworks.
In OpenCL it is easy to introduce type errors where the host and
kernel program disagree on the type of a certain value. Such errors
might not even be caught at runtime: each part of the application
would interpret the underlying bits differently which can lead to
subtle and hard to find bugs in the program.

4. Application Study: N-Body Simulation
In this section we describe an application study implemented with
PACXX. We will show how the power of C++ available in PACXX
together with multi-staging enables programmers to conveniently
express and efficiently implement GPU-specific optimizations.

N-Body simulations are an important class of physical appli-
cations. For a number of particles (also called bodies), each with
a position and a velocity, the interaction between all particles is
computed in an iterative process which updates the position and
velocity for each particle in every step.

N-Body implementation in PACXX Listing 5 shows the code of
the computation kernel performing one iteration step where one
thread computes a new position and velocity of a particle. Each
thread loads a particle p in line 10 and then computes the interaction
with all other particles by iterating over them using the for each
function in line 13. After loading the corresponding velocity v in
line 25, the new particle position and velocity are computed and
written to memory in lines 33 and 34.

Multi-staging is used in line 7 for making the number of parti-
cles available to the compiler. PACXX implicitly stages the launch
configuration, thus, the highest global id becomes known to the
compiler. Therefore, the compiler can statically evaluate the com-
parison in line 7 and, if not too many threads are launched, the
compiler will remove the branch instructions in lines 9, 24, and 32
which depend on the disabled value.

Abstraction of loop tiling with PACXX The for each function
used in Listing 5 is not provided by PACXX; it is rather an example
of how application developers can implement their own abstrac-
tions using the power of C++ available in PACXX.

Listing 6 shows the implementation of the for each function
which is part of the N-Body program. The function iterates over
a vector v and calls the function func on every element. The
implementation is optimized for GPUs: it makes use of the fast
local memory by applying loop tiling which is useful when multiple
threads iterate over the same memory area. The actual iteration
is split into two for loops (line 9 and line 12). In the outer loop,
multiple threads iterate simultaneously over chunks of memory,
called tiles. In the inner loop, each thread iterates over all elements
of a single tile. This is advantageous, as a tile is loaded into the
fast local memory in line 10 and, therefore, each element is only
accessed once in the slow global memory and multiple times in the
fast local memory.

4 2016/1/19

1 #define sq(x) ((x)*(x))
2 #define cu(x) ((x)*(x)*(x))
3

4 auto nbody = [eps2 = 0.00125f]
5 (const auto &pos , auto &npos , auto &vel) {
6 auto idx = Thread ::get(). global.x;
7 bool disabled = idx >= stage(pos.size ());
8 data_t p, v;
9 if (! disabled) {

10 p = pos[idx]; }
11 data_t a = {0.0f, 0.0f, 0.0f, 0.0f};
12 data_t r = {0.0f, 0.0f, 0.0f, 0.0f};
13 for_each(pos , [&](auto elem) {
14 r.x = p.x - elem.x;
15 r.y = p.y - elem.y;
16 r.z = p.z - elem.z;
17 r.w = 1.0f / std::sqrt(sq(r.x) + sq(r.y)
18 + sq(r.z) + eps2);
19 a.w = G * elem.w * cu(r.w);
20 a.x += a.w * r.x;
21 a.y += a.w * r.y;
22 a.z += a.w * r.z;
23 });
24 if (! disabled) {
25 v = vel[idx]; }
26 p.x += v.x * dt + a.x * 0.5f * sq(dt);
27 p.y += v.y * dt + a.y * 0.5f * sq(dt);
28 p.z += v.z * dt + a.z * 0.5f * sq(dt);
29 v.x += a.x * dt;
30 v.y += a.y * dt;
31 v.z += a.z * dt;
32 if (! disabled) {
33 vel[idx] = v;
34 npos[idx] = p; } };

Listing 5: N-Body kernel using the for each function.

Multi-staging is used here for the length of the input vector
(line 3). Together with the implicitly staged launch configuration,
the trip counts for both loops become known at compile time which
increases the likelihood for unrolling them. In addition, the case
when the input size is not evenly divisible by the size of a tile can be
handled (line 16) without deteriorating performance as compared to
the case when the input size is evenly divisible and the branch can
be removed statically.

5. The PACXX Implementation
This section discusses the PACXX implementation. We start with
the overall design of the PACXX framework, then we discuss chal-
lenges for the implementation of multi-staging in C++ and how the
PACXX implementation addresses these.

5.1 Overview of the PACXX Implementation
PACXX transforms C++ code using a combination of offline and
online compilation to a representation executable on a GPU: PTX
on Nvidia GPUs, and SPIR on AMD GPUs.

Figure 1 gives an overview of the PACXX implementation
which comprises two main components:

1) The PACXX Offline Compiler is based on Clang 3.7 [8] – an
open source compiler front-end for the C language family with
feature-complete C++14 support, and

2) The PACXX Runtime library is statically linked into the exe-
cutable; it consists of a just-in-time compiler implemented us-
ing the LLVM library [9], and specific GPU back-ends which
use the CUDA and OpenCL runtime libraries.

1 template <typename T, typename F>
2 void for_each(T &v, F func) {
3 auto s = stage([&]{ return v.size ();});
4 shared_memory <typename T::value_type > sm;
5 auto block = Block ::get();
6 auto bSize = block.range.x;
7 auto tidx = Thread ::get(). index.x;
8 int trips = s / bSize;
9 for (int i = 0; i < trips; ++i) {

10 sm[tidx] = v[i * bSize + tidx];
11 block.synchronize ();
12 for (int j = 0; j < bSize; ++j)
13 func(sm[j]);
14 block.synchronize ();
15 }
16 if (s % bSize != 0)
17 for (int j = trips * bSize; j < s; ++j)
18 func(v[j]);
19 }

Listing 6: Abstraction of loop tiling using multi staging.

+include;<algorithm>
+include;<vector>
+include;<iostream>

template<;class;ForwardIt,;
;;;;;;;;;;class;T;>
void;fill(ForwardIt;first,;
;;;;;;;;;;ForwardIt;last,;
;;;;;;;;;;const;T&;value)
{
;;;;for;(;;first;!=;last;;
;;;;;;;;;++first);
;;;;{
;;;;;;;;;*first;=;value;
;;;;}
}

C++

Executable

PACXXoRuntime

CUDAoBack-End OpenCLoBack-End

LLVM
IR

PACXX
OnlineoCompiler

PACXXo
OfflineoCompiler

CUDAoRuntime OpenCLoRuntime

Hardware

SPIRPTX

Figure 1: Key components of PACXX.

Correspondingly, C++ code is compiled by PACXX in two
stages: 1) the offline compilation stage separates the GPU code
from the CPU code and prepares the executable for the PACXX
runtime, 2) the online compilation stage during program execution
just-in-time compiles the code for the GPU using our LLVM-based
online compiler contained in the PACXX runtime library.

PACXX offline compiler In PACXX, code executed on a GPU is
wrapped in the kernel function provided by PACXX. Internally,
lambda expressions and functions passed to this function are an-
notated with the [[pacxx::kernel]] generalized attribute, a feature
introduced in the C++11 standard. The PACXX offline compiler
automatically identifies all the code which should run on the GPU
by annotating every function called from inside the original kernel
function with the same attribute. Using generalized attributes has
the advantage that the code remains valid C++, and other compil-

5 2016/1/19

ers have the freedom to ignore PACXX custom annotations. In the
PACXX compiler (as in Clang), attributes are part of the abstract
syntax tree (AST) built from the C++ source code.

After the annotations are added, the PACXX offline compiler
performs two separate passes: the first pass for preparing the GPU
code generation at runtime and the second pass for compiling the
CPU program.

In the first pass, the kernel compilation pass, the entire AST is
lowered to the LLVM intermediate representation (IR) and func-
tions with the [[pacxx::kernel]] attribute are enriched with
special metadata to identify them as kernel code in the IR. The
enriched IR is then transformed in the following steps:

1) aggressive dead code elimination removes everything from the
IR besides the kernel and functions called from the kernel;

2) a custom inliner tries to inline as many function calls as possible
into the kernel;

3) the kernel functions are optimized with standard optimizations
(equal to O3 optimizations);

4) the final IR is wrapped in an object file and passed to the linker.

The PACXX runtime library then loads this prepared IR and com-
piles it at runtime for a particular GPU.

In the second pass, the host compilation pass, the PACXX
offline compiler lowers the AST to LLVM IR a second time, but this
time the calls to functions with the [[pacxx::kernel]] attribute
are replaced with calls to the PACXX runtime library for managing
data transfers and launching the corresponding kernel. Finally, the
generated IR is lowered for the specific host architecture and object
files are generated as usually for C++ programs. The PACXX
runtime library is statically linked into the final executable, as
shown in the bottom half of Figure 1.

PACXX runtime During program execution, the PACXX runtime
loads the integrated IR from inside the executable. Additional opti-
mization passes perform GPU-specific optimizations, such as loop-
unrolling and rearranging of load instructions. Finally, the IR is
lowered to GPU code using the most appropriate LLVM compiler
back-end: we use PTX [10] together with the CUDA runtime li-
brary when targeting Nvidia GPUs, and SPIR [11] for GPUs with
an OpenCL implementation (e.g., from AMD and Intel).

5.2 Implementation of Multi-Stage Programming in the
PACXX Compiler

As described in Section 2, the PACXX programmer uses the stage
function for multi-stage programming: expressions are evaluated
prior to the kernel execution and their computed values are embed-
ded into the kernel program. We saw two variations of the stage
function: 1) where a single expression is provided (e.g., the vari-
able lclSize in Listing 4 line 8), and 2) where a function and cor-
responding arguments are provided (e.g., evaluating whether n is a
power of 2 in Listing 4 line 10). Internally, PACXX unifies these
two variants: if an expression is provided, it is wrapped in a lambda
expression, therefore, making the first variant a special case of the
more general second variant.

Overview When performing the kernel compilation pass, the
PACXX offline compiler handles calls to the stage function in
a special manner, because we want to separate the code wrapped
by the stage function from the rest of the kernel program. To pre-
vent optimization passes from inlining and, therefore, combining
the staged code with the kernel program, the function passed as
an argument to stage is annotated with the noinline attribute
provided by Clang. Then, the steps 1) dead code elimination, 2)
inlining, and 3) optimizations, are performed as described in the

previous subsection. Before the last step of wrapping the final IR
in the object file, code for calling staged functions as well for the
staged functions themselves is generated.

For each staged function, a corresponding new function is gen-
erated which will eventually be evaluated at runtime on the host
prior to executing the kernel program. The code for the staged func-
tion is removed from the kernel program and call instructions to
the function are replaced by call instructions to a proxy function
pacxx eval. These calls will be replaced at runtime with the val-
ues obtained by evaluating the staged function on the host.

Generating Staged Functions For every staged function, a cor-
responding function is generated and its IR is embedded into the
executable. The IR for staged functions is separated from the IR
for the kernel program. In the next section, we will see how the IR
of the staged functions is loaded at runtime, just-in-time compiled,
evaluated on the host and the computed results are embedded into
the kernel program. Here we describe how for a staged function its
corresponding new function is generated.

From the examples presented so far, it might seem straightfor-
ward to identify the code which should be staged and executed on
the host. But that is not always the case. Consider the following
example.

1 auto n = stage(inputSize);
2 n = n / 2;
3 auto b = stage ([](auto x){ return x<1024;} , n);

Listing 7: Staging using a value modified in the kernel program.

In line 1 of Listing 7, the value inputSize is staged and then
modified in the kernel program in line 2. The second stage call
in line 3 now depends on a value which is computed in the kernel
program. However, this is still safe, as the computation in line
2 only depends on a staged value (n) and a constant value (2)
available at compile time. We could forbid this behavior and require
that each stage call only directly depends on constants or staged
values. Instead, we allow staged functions to depend indirectly on
constants and staged values, as in the example.

We achieve this by implementing an LLVM IR transformation
pass which performs the following four steps:

1. The call instructions to the stage function are identified in the
kernel code.

2. For each call, all instructions before the call instruction itself
are cloned into a new function named pacxx staged eval#
(where # is a unique identifier). A new return instruction is
added returning the value computed by the staged function and
the function’s return type is changed appropriately.

3. Branches not leading to the staged function call are removed.

4. A second function pacxx wrapped eval# is generated which
provides a unified interface to be called by the PACXX runtime,
as we will discuss in the next subsection.

5.3 Implementation of Multi-Stage Programming in the
PACXX Runtime

We will now describe how the PACXX runtime evaluates the
pacxx staged eval# functions on the host at runtime and how
the computed values are embedded into the kernel program prior to
its execution on the GPU.

The PACXX offline compiler integrates the kernel’s IR and the
IR for the staged functions into the executable. For executing a
kernel, four steps are performed:

6 2016/1/19

1. The kernel’s parameters are set.

2. The kernel’s launch configuration is set.

3. The staged functions are just-in-time compiled, evaluated, and
the kernel IR is modified.

4. The kernel is just-in-time compiled and launched.

The PACXX offline compiler generates code for calling the PACXX
runtime to perform these four steps. The first two steps are straight-
forward. We will describe the two last steps in the following.

Staged Function Evaluation To evaluate the staged functions
in step 3, their IR is loaded from the executable and just-in-time
compiled for the host architecture. For every staged function, the
corresponding pacxx wrapped eval# function is called using the
unified C++ interface: void(void*, void*). The first argument
is a pointer to an array holding all input arguments and the second
argument points to a memory location for the output value. The
PACXX runtime copies all arguments to the heap and allocates
memory for the output value prior to calling the function.

The kernel program’s IR is then modified by replacing the calls
to the proxy function pacxx eval, inserted by the PACXX offline
compiler, with a constant expression of the evaluated value.

Kernel Compilation and Launch After the staged values have
been embedded into the kernel program, the PACXX runtime per-
forms some additional optimizations on the code: the information
of the launch configuration, i. e., the global and local size, is always
embedded into the kernel program. This can be viewed as an im-
plicit staging of the launch configuration. A special pass optimizes
the control flow graph to remove branches that are never entered by
a thread on the GPU.

The kernel program is lowered to the machine code representa-
tion by one of two backends currently implemented in the PACXX
runtime: PTX [10] for CUDA and SPIR [11] for OpenCL. Finally,
the generated GPU code is linked by the corresponding CUDA or
OpenCL runtime.

To minimize the overhead of the just-in-time compilation pro-
cess, the compiled kernel code is cached by PACXX. If the kernel
is launched again, all staged functions are evaluated again and their
results are checked against the previous results stored internally
by PACXX. If all results are equal then the cached kernel code is
still valid and can be launched straight away. If staged values have
changed, the kernel compilation process is repeated to generate a
new version of the kernel code which is then launched as usual.

6. Experimental Evaluation
In this section, we evaluate two case studies which make use of
multi-stage programming, in PACXX and OpenCL: the reduction
example and the N-Body simulation.

Experimental Setup We used three GPUs for our evaluation: 1)
an Nvidia Tesla K20c GPU (Kepler architecture) with OpenCL 1.2
and CUDA 7.5; 2) an Nvidia GTX 480 GPU (Fermi architecture)
with OpenCL 1.1 and CUDA 6.5; 3) an AMD R9 295X2 GPU
(Hawaii architecture) with OpenCL 2.0.

Kernel runtimes are reported as median of 1000 runs measured
using the OpenCL profiling API and the Nvidie profiler.

6.1 Parallel Reduction
The reduction OpenCL implementation is taken from the Nvidia’s
SDK [6]. We discussed the parallel reduction implementations in
Section 2 and Section 3. We evaluate the programs shown in List-
ing 3 (OpenCL) and Listing 4 (PACXX). To observe the impact of
multi-staging, we also created two corresponding programs which
do not use the multi-stage optimization.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Nvidia K20C Nvidia GTX480 AMD R9 295X2

S
p

e
e
d
u
p

Architecture

OpenCL
OpenCL +MSP
PACXX
PACXX +MSP

Figure 2: Speedup of PACXX over OpenCL with and without
multi-staging for parallel reduction, input off 227 integers.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Nvidia K20C Nvidia GTX480 AMD R9 295X2

S
p

e
e
d
u
p

Architecture

OpenCL
OpenCL +MSP
PACXX
PACXX +MSP

Figure 3: Speedup of PACXX over OpenCL with and without
multi-staging for parallel reduction, input of 227 + 172 integers.

We evaluate OpenCL and PACXX with and without multi-
staging using two input sizes: 227 and 227 + 172 (as one of the
staged functions decides whether the input is a power of two, we
are interested on the effect of the input size on the performance).
Figure 2 shows the results for the power of two input size and
Figure 3 for the other input size.

Depending on the architecture, we observe speedups of up to
2× due to multi-staging. We observe that using multi-staging for
removing branch instructions is beneficial on the Fermi architec-
ture (GTX 480) and the AMD GPU. The Kepler architecture has
reduced the cost of branch instructions and, therefore, benefits less
in this use case.

Interestingly, from comparing the results for AMD across the
two figures, we obverse a significant impact of the input size on
performance; therefore, removing the branch which depends on the
input size being a power of two is crucial for performance on the
AMD GPU. This is not the case for the Nvidia GTX 480 where
removing bra nches using multi-staging is beneficial independently
of the input size.

The speedup of the PACXX implementation without multi-
staging as compared to OpenCL on the GTX 480 GPU and the
AMD GPU results from the implicit staging of the launch configu-
ration by PACXX online compiler. This implicit staging results in
nearly the same kernel code as in the PACXX version using multi-
staging, removing dead branches in the tree-based reduction.

On the Kepler architecture, branches are not as costly, and
the performance improvements in the PACXX version using MSP
results from the aggressive loop unrolling by the online compiler
when compiling for Nvidia GPUs. For the AMD GPU, the loop
unrolling is done more conservatively and shows no performance
improvements at all.

7 2016/1/19

6.2 N-Body Simulation
We compared the runtime of the N-Body simulation presented in
Section 4 against an equivalent OpenCL implementation applying
the same loop tiling optimization. The N-Body OpenCL implemen-
tation is a manually extended version of the implementation pro-
vided by Nvidia [12]. Our extended version is capable of handling
arbitrary number of particles while Nvidia’s original version only
handles certain input sizes. As with the parallel reduction, we also
implemented versions without multi-staging to observe the perfor-
mance implications. We evaluated with ten different numbers of
particles ranging from 210 to 219.

Nvidia K20c Results The experimental results for the Nvidia
K20c are shown in Figure 4 as speedups vs. the OpenCL implemen-
tation not using multi-staging. The PACXX implementation with
multi-staging has a clear performance advantage over all other im-
plementations. Performance improves by up to 1.4 times as com-
pared with OpenCL. The performance advantage of PACXX results
from the following two main reasons.

0.9

1

1.1

1.2

1.3

1.4

1.5

210 212 214 216 218 220

S
p

e
e
d
u
p

Particles

OpenCL
OpenCL +MSP
PACXX
PACXX +MSP

Figure 4: Speedup of the N-Body simulation on a Nvidia K20c as
compared to OpenCL without multi-staging.

The first reason is the aggressive loop unrolling performed by
the PACXX online compiler. For the PACXX version with multi-
staging, both loops are unrolled, due to the information available
through multi-staging. The PACXX online compiler performs a
more aggressive loop unrolling than the Nvidia OpenCL compiler,
ignoring possible performance losses through cache misses in the
instruction cache. Our study of the PTX binaries generated by
the Nvidia OpenCL compiler shows that the outer loop is not
unrolled even though the number of iterations is known statically.
For the version without multi-staging PACXX decides not to unroll
the outer loop as it is done by the OpenCL compiler, because
without knowing the loop condition exactly, branching inside of the
loop would be necessary and would introduce negative effects on
the kernels performance. The performance benefit of unrolling the
outer loop is more significant for smaller input sizes than it is for
larger ones, explaining the decreasing speedup of the multi-staging
version of PACXX compared to the version without multi-staging.

The second reason originates from different register usage.
PACXX lowers the LLVM IR to PTX without performing specific
optimizations for reducing the number of registers. For this appli-
cation, Nvidia’s compiler generates PTX code using 35 registers,
while the PACXX versions use 37 registers.

These two reasons result in the observed speedup which de-
creases for larger input sizes, because the memory transfers on the
global memory start to dominate the performance and the advan-
tages of our generated PTX code are mitigated.

0.85

0.9

0.95

1

1.05

1.1

1.15

210 212 214 216 218 220

S
p

e
e
d
u
p

Particles

OpenCL
OpenCL +MSP
PACXX
PACXX +MSP

Figure 5: Speedup of the N-Body simulation on an Nvidia GTX
480 GPU as compared to OpenCL without multi-staging.

Nvidia GTX 480 Results Figure 5 shows the performance re-
sults for the Nvidia GTX 480. The PACXX version without multi-
staging is about 5% slower than the OpenCL implementations. This
results from the CUDA Toolkit version (6.5) and the OpenCL 1.1
driver shipped with it, which is used by the OpenCL implementa-
tions but not the PACXX implementations. The use of OpenCL 1.1
driver results in faster code for the OpenCL implementations be-
cause non IEEE 754 compliant floating point optimizations are per-
formed by the OpenCL compiler. However, PACXX uses the proper
floating point operations. The PACXX version with multi-staging
compensates this disadvantage and is on-par with the OpenCL
implementations without loosing floating point accuracy. As de-
scribed in the previews paragraph, the Nvidia OpenCL compiler
does not unroll the outer loop and performance of the multi-staging
version is equal to the version without multi-staging.

0.95

1

1.05

1.1

1.15

1.2

1.25

210 212 214 216 218 220

S
p

e
e
d
u
p

Particles

OpenCL
OpenCL +MSP
PACXX
PACXX +MSP

Figure 6: Speedup of the N-Body simulation on an AMD R295X2
GPU as compared to OpenCL without multi-staging.

AMD R295X2 Results Figure 6 shows the speedup of PACXX
over the OpenCL version without multi-staging for the AMD
R295X2 GPU. On the AMD architecture ,all implementations are
close for most input sizes. Using multi-staging on the AMD GPU
does not provides as much advantage as on the Nvidia GPUs for
this particular application. The optimizations performed by the
PACXX online compiler, such as aggressive loop unrolling, is cur-
rently better tuned for Nvidia GPUs and not as effective on AMD
architectures. Interestingly, the spike for 215 particles is a result of
a performance drop in the baseline OpenCL implementation. We
executed the same kernel across all GPUs and inputs sizes, and we
did not observe this behavior elsewhere, therefore, we believe this
to be an architecture-specific behavior related to the kernel launch
configuration.

8 2016/1/19

7. Related Work
There exist projects related to ours in the area of GPU programming
and compilation as well as multi-stage programming.

GPU programming CUDA [1] and OpenCL [2] are the two main
programming approaches used for GPU programming today. As
discussed earlier, OpenCL separates an application into host and
kernel program. In CUDA, programs are implemented in a single
but not standard-conform C++ program and the functions executed
on the GPU still have to be explicitly annotated. Multi-stage pro-
gramming, as discussed in this paper, is not possible in CUDA as
the kernel program is not compiled at runtime and, therefore, no
runtime values can be embedded in the kernel program. PACXX
offers a unified C++ programming approach with a safe and easy-
to-use interface for multi-stage programming.

SYCL [13] is a recently developed high-level interface that
integrates the OpenCL programming model into C++. However,
SYCL still requires explicit memory management using provided
Buffers in the host and kernel code, while in PACXX the memory
management happens implicitly for the programmer. Furthermore,
multi-stage programming is not possible in SYCL as the kernel and
host program are compiled together as in CUDA.

Concord [14] is another approach for integrating GPU program-
ming into C++. As PACXX, Concord is built on top of LLVM,
however, Concord compiles the C++ code to OpenCL C code
while PACXX generates LLVM intermediate representation di-
rectly. Concord uses the advanced shared virtual memory (SVM)
features from OpenCL 2.0 to provide a transparent memory han-
dling, especially suitable for pointer-intense data structures. In
PACXX, these irregular data structures must be manually main-
tained by the programmer. The portability of Concord programs is
limited to GPUs from hardware vendors providing an OpenCL 2.0
implementation supporting SVM which, e.g., currently excludes
Nvidia GPUs. The implicit memory handling in PACXX does not
rely on the SVM features of OpenCL to provide better portability.

To simplify GPU programming, projects like Thrust [15],
Bolt [16], and SkelCL [17] provide generic patterns of parallel
programming which are customized by application programmers.
While these abstractions simplify GPU programming, it is often
hard to implement application-specific optimizations, like the loop
tiling optimization implemented with PACXX and applied in this
paper for the N-body simulation.

Just-in-time GPU Compilation LambdaJIT [18] is a JIT ap-
proach similar to PACXX: GPU code is compiled at runtime from
C++ lambda expressions used in algorithms from the C++ standard
library. A limited form of multi-staging is supported by Lamb-
daJIT: variables captured by the lambda expression by-value are
embedded as constants in the GPU code enabling similar optimiza-
tions as available in PACXX. By providing the stage function,
PACXX allows a general purpose usage of multi-staging in the
kernel code compared to LambdaJIT.

Multi-Stage Programming MSP was pioneered by Taha [19]
and first introduced into the functional programming languages
MetaML [20] and MetaOcaML [21]. Multiple efforts have been
made to make MSP available in other languages, including Mint [22]
for Java, LMS [23] for Scala, and Terra [24] for Lua [25]. None of
these specifically target GPU programming like PACXX does.

The Lightweight Modular Staging [23] framework implemented
in Scala builds the foundation of the Delite [26] project which sim-
plifies the development of domain-specific languages (DSL) for
parallel processors including GPUs. Multi-staging can be used in
DSLs to generate more efficient GPU code with similar optimiza-
tions as presented in this paper for C++ and STL.

8. Conclusion
In this paper we present PACXX – a unified programming approach
for GPU using modern C++ with support for multi-stage program-
ming. We show that our programming model provides a unified
programming experience for application developers and does not
split the program into separate parts as OpenCL does. This results
in shorter programs as compared to OpenCL as type declarations
and commonly used functions can be reused and do not have to be
reimplemented as in OpenCL.

PACXX offers support for multi-stage programming, such that
values computed on the CPU at runtime are embedded into the
GPU program enabling the just-in-time compiler to generate more
efficient GPU code. We demonstrate that, depending on the archi-
tecture, multi-stage programming can provide significant speedups
of up to 2× as compared to code not using this optimization tech-
nique. Multi-stage programming is not possible in CUDA, as the
GPU code is not accessible at runtime. In OpenCL multi-staging
can be used, but is cumbersome and error-prone as plain strings
have to be manipulated explicitly. PACXX provides a type-safe and
easy-to-use interface for multi-staging.

Acknowledgments
The authors would like to thank NVIDIA Corp. for their generous
hardware donations supporting this work.

References
[1] Nvidia. CUDA C Programming Guide, 2015. Version 7.0.
[2] Khronos OpenCL Working Group. The OpenCL Specification, 2012.
[3] Tiark Rompf, Kevin J. Brown, HyoukJoong Lee, Arvind K. Sujeeth,

et al. Go meta! A case for generative programming and DSLs in per-
formance critical systems. In 1st Summit on Advances in Program-
ming Languages, SNAPL 2015, volume 32 of LIPIcs, pages 238–261.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[4] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan C. Catanzaro,
Paul Ivanov, and Ahmed Fasih. PyCUDA and PyOpenCL: A scripting-
based approach to GPU run-time code generation. Parallel Comput-
ing, 38(3):157–174, 2012.

[5] Michael Haidl and Sergei Gorlatch. PACXX: Towards a Unified
Programming Model for Programming Accelerators Using C++14. In
Proceedings of LLVM Compiler Infrastructure in HPC (LLVM-HPC)
at Supercomputing 14, pages 1–11. IEEE, 2014.

[6] Nvidia. CUDA Toolkit 7.0, 2015.
[7] Mark Harris. Optimizing Parallel Reduction in CUDA. Nvidia, 2007.
[8] Chris Lattner. LLVM and Clang: Next Generation Compiler Technol-

ogy. In Proceedings of the BSD Conference, pages 1–2, 2008.
[9] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework

for Lifelong Program Analysis & Transformation. In CGO 2004,
pages 75–86. IEEE, 2004.

[10] Nvidia. PTX:Parallel Thread Execution ISA, 2010. Version 4.2.
[11] Khronos OpenCL Working Group. The SPIR Specification, 2014.
[12] Lars Nyland, Mark Harris, and Jan Prins. Fast N-Body Simulation

with CUDA. GPU Gems, 3(1):677–696, 2007.
[13] Khronos OpenCL Working Group. SYCL Specifcation, 2015.
[14] Rajkishore Barik, Rashid Kaleem, Deepak Majeti, Brian T Lewis, Ta-

tiana Shpeisman, Chunling Hu, Yang Ni, and Ali-Reza Adl-Tabatabai.
Efficient Mapping of Irregular C++ Applications to Integrated GPUs.
In Proceedings of Annual IEEE/ACM International Symposium on
Code Generation and Optimization, page 33. ACM, 2014.

[15] Nathan Bell and Jared Hoberock. Thrust: A Parallel Template Library.
GPU Computing Gems Jade Edition, page 359, 2011.

[16] AMD. Bolt C++ Template Library, 2014. Version 1.2.
[17] Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. SkelCL - A

Portable Skeleton Library for High-Level GPU Programming. In

9 2016/1/19

Workshop on High-Level Parallel Programming Models and Support-
ive Environments at IPDPS 2011, pages 1176–1182. IEEE, 2011.

[18] Thibaut Lutz and Vinod Grover. LambdaJIT: A Dynamic Compiler
for Heterogeneous Optimizations of STL Algorithms. In Workshop
on Functional High-Performance Computing at ICFP, pages 99–108.
ACM, 2014.

[19] Walid Taha. A Gentle Introduction to Multi-Stage Programming. In
Domain-Specific Program Generation, pages 30–50. Springer, 2004.

[20] Walid Taha and Tim Sheard. Multi-Stage Programming with Explicit
Annotations. In ACM SIGPLAN Notices, volume 32, pages 203–217.
ACM, 1997.

[21] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Im-
plementing Multi-Stage Languages Using ASTs, Gensym, and Reflec-
tion. In Generative Programming and Component Engineering, pages
57–76. Springer, 2003.

[22] Edwin Westbrook, Mathias Ricken, Jun Inoue, Yilong Yao, Tamer
Abdelatif, and Walid Taha. Mint: Java Multi-Stage Programming
Using Weak Separability. ACM SIGPLAN Notices, 45(6):400–411,
2010.

[23] Tiark Rompf and Martin Odersky. Lightweight Modular Staging:
A Pragmatic Approach to Runtime Code Generation and Compiled
DSLs. In ACM SIGPLAN Notices, volume 46, pages 127–136. ACM,
2010.

[24] Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan
Vitek. Terra: A Multi-Stage Language for High-Performance Com-
puting. In ACM SIGPLAN Notices, volume 48, pages 105–116. ACM,
2013.

[25] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Waldemar
Celes Filho. Lua - An Extensible Extension Language. Software:
Practice and Experience, 26(6):635–652, 1996.

[26] Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Tiark Rompf,
Hassan Chafi, et al. Delite: A compiler architecture for performance-
oriented embedded domain-specific languages. ACM Trans. Embed-
ded Comput. Syst., 13(4s):134:1–134:25, 2014.

10 2016/1/19

